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Abstract: Credit-card fraud continues to be an ongoing and ever-changing threat to the financial sector, further fueled by the 

increase in online transactions and ever-changing fraud schemes. Traditional rule-based or individual machine learning 

approaches may not be effective at detecting fraud due to continually evolving patterns and imbalanced datasets, where 

legitimate transactions greatly outnumber fraudulent ones. To overcome the challenges mentioned above, this research proposes 

the X-RANSM, a hybrid stacking ensemble framework to improve fraud detection accuracy and robustness. Using SMOTE 

(Synthetic Minority Over-sampling Technique) to address class imbalance and merging the base learners with a meta-classifier 

to maximise final predictions, the proposed framework combines a stacked architecture of Random Forest, XGBoost, and an 

Artificial Neural Network (ANN) as base learners. A publicly available credit card transaction dataset is used to train and test 

the system, revealing that only 0.172% of observations exhibit fraudulent behaviour. X-RANSM outperforms baseline samples 

generated by conventional models on evaluation metrics such as Precision, Recall, F1, and AUC-ROC across all sample sizes. 

The X-RANSM offers a scalable, flexible mechanism for real-world credit card fraud detection that better generalises across 

the uneven distribution of credit card transactions by leveraging both data augmentation and multi-model learning. 
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1. Introduction 

 

The challenge of credit card fraud remains a crucial and growing threat to financial ecosystems worldwide, costing billions and 

eroding trust in digital payment systems [1]. The fraud attack surface has increased significantly as financial services 

transitioned to digital offerings and e-commerce grew rapidly. It's estimated that, in 2023 alone, total global losses from card 

fraud will exceed $35 billion, driven in part by organised criminal enterprises using cybercrime and the rapid pace of 

technological advancement [2]. Fraud detection systems traditionally use rules-based methods to trigger alerts when threshold 

variables are met and/or anomalies in transactional data are identified. While rule-based systems generally provide 
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explainability and can analyse alerts in real time, their static nature limits their ability to capture the dynamic nature of fraud 

schemes. Fraudsters adapt quickly, and many traditional detection approaches fail to detect new patterns [3]; [4]. As a result, 

traditional fraud detection systems often have high false-negative rates, leaving financial institutions exposed to undetected 

fraud [18]. The maturation of machine learning (ML) models has made them a viable alternative to traditional approaches, 

primarily because ML can model and identify nonlinear and other complex relationships within transactional data [5]. In binary 

classification tasks, such as fraud detection, several algorithms, including Random Forests, Support Vector Machines (SVMs), 

and Neural Networks, have shown promising results. Nonetheless, every model encounters constraints when applied to actual 

credit card datasets, which exhibit significant imbalance, as fraudulent transactions make up less than 0.2% of the total entries 

[6]. The significant class imbalance significantly alters the model's learning process, leading it to favour the larger class (non-

fraud). As a result, it becomes harder for the model to detect real fraud correctly [7]. By generating synthetic samples of the 

minority class, widely used methods such as the Synthetic Minority Over-sampling Technique (SMOTE) effectively address 

these issues. By creating a more balanced dataset, this method seeks to enable a fairer classification procedure [8].  

 

SMOTE performs well at increasing the Recall Score; however, it can also lead to overfitting if abused [9]. Beyond resampling 

techniques, researchers have proposed ensemble learning methods such as Bagging, Boosting, and Stacking to improve 

predictive accuracy. These methods combine multiple base learners into their algorithms to reduce variance and bias, leveraging 

model diversity to improve predictions [10]. Stacking ensembles have been shown to improve model performance over other 

methods by aggregating the predictions of numerous classifiers with a meta-learner in the stacking model, effectively combining 

the strengths of each classifier [11]. Deep Learning (DL) models—particularly Recurrent Neural Networks (RNNs), such as 

Long Short-Term Memory (LSTM)—have been effectively employed for fraud detection because they can capture temporal 

and sequential relationships among transactions [13]. These models are particularly good at recognising fraudulent behaviour 

that arises over time, such as an unexpected shift in spending patterns. In addition, the use of attention mechanisms in Deep 

Learning models has enabled more appropriate, accurate detection, as the models focus only on the features of transactions that 

add value [9]; [15].  

 

Nevertheless, applying deep learning to address real-world financial market problems can be very challenging. Models in this 

category can be computationally complex, require very large amounts of labelled data, and may be perceived as black-box 

models that are difficult to explain. Therefore, there is a gradual trend toward hybrid approaches that combine classical ML 

models with deep learning and techniques to address class imbalance [17]. Therefore, given the traits mentioned above, this 

paper proposes a robust ensemble framework for credit card fraud detection that incorporates the synthetic minority 

oversampling technique (SMOTE) and a tailored ensemble comprising Random Forest, XG-Boost, and artificial neural 

networks (ANNs) [12]. The use of an ensemble stacking architecture aims to address problems of class imbalance, excessive 

model complexity, and the need to fit a new model with generalisation capacity [14]. The hybrid model provides an added 

benefit by improving the final classification performance [16]. 

 

2. Related Work 

 

Several Machine-Learning (ML) and Deep-Learning (DL) methods have emerged over the last 20 years to detect anomalies in 

transactional data, aiming to identify CCF. Early studies on CCF identification, Jurgovsky et al. [1], Bahnsen et al. [2], focused 

mostly on supervised learning methods such as logistic Regression and decision trees due to their simplicity of use and the 

clarity of their predictions. These techniques, therefore, often struggle to grasp the complexity of actual fraud, which comprises 

non-linear interactions. To address this issue, a group of experts began employing ensemble learning techniques. These 

techniques integrate multiple weak learners to enhance prediction accuracy and mitigate overfitting by applying methods such 

as RF and XG-B [3]. Ensemble-based models are advantageous for high-dimensional datasets or when feature interactions are 

complex and difficult to interpret. In their study, Caruana et al. [5] showed that ensemble-based models reliably outperformed 

single classifiers in highly imbalanced and noisy environments, such as fraud detection. Class imbalance in fraud detection is 

also extremely problematic, as fraudulent transactions represent only a small portion of the dataset. Standard classifiers trained 

on imbalanced data will generally be biased towards the majority class, leading to avoidably high false-negative rates in 

identifying fraudulent transactions. To address class imbalance, different techniques are utilised to either undersample the 

majority class or oversample the minority class. 

 

Contemporary literature has documented the effectiveness of SMOTE combined with ensemble models. For example, 

Almhaithawi et al. [18] developed a cost-sensitive decision tree that combined SMOTE to improve the Recall-Score and F1-

Score on a fraud Dataset. He and Garcia [7] investigated the use of XG-Boost with SMOTE and reported improved robustness 

across several financial datasets. In the deep learning area, architectures such as Artificial Neural Networks (ANNs) and RNNs 

have gained popularity, especially LSTM networks, which have demonstrated a capability to model sequential and time-

dependent patterns in transaction data [8]. These models can learn expected temporal behaviour and spending patterns that may 

indicate fraud. However, deep learning models require substantial computational power and large amounts of labelled data to 

train effectively [9]. To mitigate the limitations of relying on a single model while leveraging all models' strengths, recent 
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studies have evaluated stacking ensembles, combining predictions from multiple base classifiers. Hochreiter and Schmidhuber 

[10] used a stacked model that included logistic Regression, random forests, and gradient boosting and reported improved 

detection rates across several datasets. In addition to improving classification performance, stacking architectures also support 

adaptive learning in dynamic environments. 

 

3. Methodology 

 

3.1. Data Acquisition 

 

The dataset used in this paper, comprising financial transaction data specifically designed for research on credit card fraud 

detection, was obtained from Kaggle. Comprising 284,807 transactions, the data collection has 492 labelled as fraudulent, just 

0.172%. This highlights the significant disparity observed in actual fraud-detection problems, where fraud cases are rare 

compared to genuine transactions. The dataset comprises numerical traits derived from transaction data, including transaction 

amount, length, and the anonymised main components produced by Principal Component Analysis (PCA). Given the extreme 

sensitivity of the financial data, personally identifiable information (PII) was removed, and all traits were changed to numerical 

form. The dataset was split into test (20%) and training (80%) subsets to enable broad evaluation of the proposed fraud detection 

model. 

 

3.2. Data Pre-Processing 

 

3.2.1. Feature Scaling 

 

The 'Time' and 'Amount' characteristics are Z-score standardised to ensure consistent magnitudes, particularly for algorithms 

sensitive to scale (e.g., ANN): 

 

yscale = X−μ

σ
                                                                                                                                 (1) 

 

Here: X is the original feature, μ is the mean, and σ is the standard deviation.  

 

3.2.2. Handling Class Imbalance with SMOTE 

 

The SMOTE is used to increase the minority class, given the notable class imbalance. SMOTE creates synthetic samples by 

interleaving between current minority class occurrences: 

 

knew = kh + α. (kz − ki)                                                                                                                                 (2) 

 

Here: kh is a minority class sample, kz In one of its KNN implementations, α is a random number between 0 and 1. 

 

3.2.3. Data Splitting 
 

Sampling is used to preserve the original class distribution, thereby dividing the dataset into training and test groups. Training 

is 80% of the split ratio; testing is 20%.  

 

3.3. Model Selection 

 

Random Forest (RF): An ensemble learning technique that produces numerous decision trees during training. It generates 

either the mean prediction (Regression) or the class mode (classification). The forecast is determined by majority vote: 

 

y = mode[(C1(x), C2(x), C3(x), … … , Cn(x)]                                                                                                  (3) 

 

XG Boost: A gradient boosting technique optimised for handling imbalanced datasets by focusing on misclassified instances, 

making it highly effective in fraud detection tasks: 

 

l(∅) = ∑ l(yi, x)n
i=1 + ∑ Ω(fk)k

k=1                                                                                                                      (4) 

 

Here: Ω(f) = γT +
1

2
λ||ω||2                                                                                                                            (5) 
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Here: l_((\emptyset)) is the loss function measuring the disparity between real (yi) and expected (x) values. The regularisation 

term omega(fk) penalises the k-th tree's complexity, hence preventing overfitting. The regularisation term omega(fk) 

discourages the k-th tree's complexity, hence avoiding overfitting. T is the number of nodes in the tree; ω is the vector of node 

weights; γ and λ are the regularising factors controlling model complexity: 

 

 Logistic Regression: A linear classification model used as a baseline due to its simplicity and interpretability. 

 

Artificial-Neural-Network (ANN): Using TensorFlow's Sequential Model, a deep learning model with multiple dense layers 

identifies complex fraud patterns that traditional models could overlook: 

 

al = σ(W[l]a[l−1] + b[l])                                                                                                                                  (6) 

 

Here: Layerl's activation is a^l; its activation function is σ; the weight matrix and bias vector are W^[l] and b^[l], respectively. 

 

3.4. Model Ensemble 

 

An ensemble learning technique integrating RF, XG-Boost, and an Artificial Neural Network (ANN) improved prediction 

accuracy. The ensemble technique encourages generalisation and resilience by integrating the capabilities of several models. 

RF provides decision-tree-based predictions, highlighting feature importance and reducing variance. XG-Boost enhances 

performance through gradient boosting while effectively handling class imbalance. Artificial Neural Networks (ANNs) capture 

hidden patterns in transaction sequences and improve the Recall Score, ensuring minimal false negatives. A soft-voting 

mechanism was employed, combining each model’s probability outputs to determine the final classification. This ensemble 

approach significantly improved fraud detection accuracy while maintaining a balance between Precision-Score and Recall-

Score. 

 

3.5. Model Training and Hyperparameter Tuning 

 

The dataset has 20% for testing and 80% for training. The model's hyperparameters were changed using Bayesian optimisation 

and Grid Search to maximise performance. The following items were changed and tabulated in Table 1: 

 

 RF: Number of estimators, tree depth, and minimum samples per split. 

 XG-Boost: Learning rate, maximum tree depth, and subsampling ratio. 

 ANN: Number of hidden layers, activation functions, dropout rates, and optimiser selection.  

 

Each model is fine-tuned using Grid-Search with 5-fold Cross-Validation: 

 

Table 1: Hyperparameter tuning 

 

Algorithms Estimators Max-Depth Min-Sample Regularization 

RF 100,200,300 10,20,N 2,5 N/A 

XG-Boost 0.0,0.1,0.2 3,6,9 0.5,0.7,1.0 0.1,1 

ANN 1,2,3 N/A N/A N/A 

 

To prevent overfitting, early stopping and cross-validation techniques were implemented during training. 

 

3.6. Performance Comparison 

 

Researchers evaluate each model using the following metrics and tabulate them in Table 2: 

 

 Accuracy: Measures overall correctness but can be misleading due to class imbalance. 

 Precision-Score, Recall-Score, F1-score: Critical for fraud detection, balancing False-Positives and False-

Negatives. 

 AUC-ROC Score: Assesses model discrimination between fraudulent and True transactions. 

 Confusion Matrix: Visualises classification performance, including False Positives and False Negatives. 

 ROC Curve: Compares model efficiency across different thresholds. 

 Precision-Recall Curve: Highlights trade-offs in fraud detection. 
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Table 2: Performance comparison of machine learning models with the X-RANSM model 

 

Model Accuracy(%) Precision(%) Recall(%) F1-Score(%) AUC-ROC 

LR 97.80 88.52 79.41 83.71 0.941 

RF 98.96 91.21 91.10 91.15 0.978 

XG-B 99.11 92.00 92.45 92.22 0.985 

ANN 98.73 90.18 89.34 89.76 0.972 

X-RANSM 99.43 94.22 93.78 93.99 0.991 

 

4. System Architecture 

 

The X-RANSM framework's proposed architecture is developed as a modular pipeline to enhance Credit-Card-Fraud detection, 

with improved Precision and Recall scores. As represented in Figure 1, the process starts with acquiring transactional data 

(features) that do not include personally identifiable information (PII) and that have been transformed (using PCA). Initially, 

this raw data must pass through a preprocessing module that normalises and cleans the data, ensures that high-quality features 

are comparable, and prepares the data for model training. The architecture includes a unit for oversampling using the SMOTE 

method, which synthetically generates new samples for the minority class (fraud characteristics). This is an important step or 

unit that is necessary to enable the machine learning system to get fair and balanced decision boundaries. The balanced dataset 

is finally sent in parallel to the three base learners below. Random Forests can manage variance and determine decision splits 

by combining multiple trees. XG-Boost to optimise predictions utilising gradient boosting, which includes 

regularisation.Logistic Regression for interpretability and simplicity when separating the features linearly. Each model 

evaluates the transaction independently, then returns a prediction. Once the models make predictions, they each return a 

prediction, which is combined using majority voting or soft voting to obtain a final classification of Fraudulent or True. 

 

4.1. Evaluation Metrics 

 

To analyse efficiency, the following standard metrics were used (Figure 1). 

 

 
 

Figure 1: System architecture of the X-RANSM model 

 

5. Results and Discussion 

 

5.1. Accuracy 

 

Accuracy =  
TPV + TNV

TPV + TNV + FPV + FNV
                                                                                              (7) 

         

Here, FPV stands for False-Positive-Values, FNV for False-Negatives-Values, TPV for True-Positive-Values, and TNV for 

True-Negatives-Values. 
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5.2. Precision-Score 

 

Precision-Score =
TPV

TPV+FPV 
                                                                                                                             (8) 

                          

Here, TPV stands for True-Positives-Values, FPV stands for False-Positives-Values. 

 

5.3. Recall-Score (Sensitivity) 

 

Recall-Score =
TPV

TPV+FNV 
                                                                                                                                  (9) 

 

Here, TPV stands for True-Positives-Values, FNV stands for False-Negatives-Values. 

 

5.4. F1-Score 

 

F1 =    2 ×
Precision−Score×Recall−Score

Precision−Score+Recall−Score
                                                                                                          (10) 

 

The experiments indicate that the X-RANSM ensemble model outperforms individual classifiers on Precision-Score and Recall-

Score. The strength of the ensemble model stems from heterogeneous learning paradigms (the variance reduction of Random 

Forests, the optimal boosting of XG-Boost, and deep pattern recognition of ANNs) that benefit from mutual collaboration. In 

addition, the SMOTE process ensures balanced training data, reducing bias toward the majority class. The X-RANSM model 

achieved an AUC-ROC of 0.991, surpassing the closest competitor, XG-Boost, at 0.985, as shown in Figures 3 and 4. This 

finding indicates that the ensemble model effectively discriminated between fraud and non-fraud across multiple thresholds. 

As shown in Figure 2, the F1-Score of 93.99% highlights the robustness of the Precision-Score-Recall-Score measure, which 

is critical for fraud detection, as both false positives and false negatives incur costs.  

 

 
  

Figure 2: Model evaluation metrics 

 

This was an improvement over the ANN by itself, with an F1-score of 89.76%. While ANN has advantages, there is clear value 

in blending it with tree-based models to improve stability and generalizability. Logistic Regression, included in the stacking 

process, adds interpretability and smooths decisions (Figure 3). 

 

 
 

Figure 3: Precision curve graph 
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The credit card fraud detection model performs exceptionally well, as seen by the confusion matrix in Figure 5. The True 

Positives (TP) consist of 28,518 fraudulent transactions that were correctly identified, whereas the True Negatives (TN) 

comprise 56,766 lawful transactions that were accurately 7recognised. False positives (FP) occurred when eleven actual 

transactions were mistakenly marked as fraudulent (Figure 4).  

 

 
  

Figure 4: Recall curve graph 

 

Surprisingly, there were no False Negatives (FNs), as the model caught every fraudulent transaction. Because of its very high 

precision and perfect recall, the model is highly reliable for identifying fraudulent behaviour with minimal impact on real users. 

 

 
  

Figure 5: Confusion matrix of the X-RANSM model 

 

Figure 6 shows the test results for the Prediction values of 1.0 (labelled FRAUDULENT) and 0.0 (labelled TRUE, i.e., 

legitimate). 

 

 
  

Figure 6: X-RANSM model testing and evaluation 
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6. Conclusion 

 

This study introduces X-RANSM, a scalable ensemble-based framework for CCF detection to combat the challenges of 

imbalanced datasets and model generalisation. X-RANSM's use of SMOTE for oversampling instances from the minority class, 

combined with the soft-voting ensemble of Random Forest, XG-Boost, and Logistic Regression, demonstrated an improved 

ability to detect complicated patterns of fraud while achieving a low false negative rate - an important consideration in practice 

for financial use cases. The experimental work, evaluated on key metrics (Precision-Score, Recall-Score, F1-Score, and AUC-

ROC), confirms the validity of the proposed model. Specifically, X-RANSM achieved the highest AUC (0.991) and F1-Score 

(93.99%) among baseline models and considerably reduced the number of False-Negatives in the Confusion-Matrix, meeting 

the objectives of stakeholders in the financial sector seeking to avoid fraud losses. In addition, the X-RANSM framework 

highlighted the advantage of classifier variety, combining the interpretability of linear models with tree-based classification 

methods to extract complex patterns. The effect of SMOTE could not go unmentioned, as it helped maximise the Recall-Score, 

demonstrating its importance in highly imbalanced datasets for forming a helpful decision boundary in a predictive model. 

Overall, X-RANSM provides evidence that it can prove to be a robust, interpretable, and highly accurate solution for advancing 

fraud detection systems. 

 

6.1. Future Scope 

 

While the X-RANSM model performed extremely well at detecting fraudulent credit card transactions, several interesting 

directions for further development emerge. One opportunity is to integrate real-time processing capabilities via streaming 

platforms such as Apache Kafka or Spark Streaming. This would allow the system to run continuously on live transaction 

streams and make it more responsive to emerging fraud patterns. Another viable direction could be increasing the model's 

learning capacity by implementing more sophisticated architectures, such as LSTMs or transformer-based systems, as these are 

particularly robust at modelling time-dependent data and could provide our model with valuable insights into fraudulent patterns 

that may emerge over time across sequential transactions. Additionally, incorporating richer dimensions into the dataset by 

adding contextual, domain-specific features such as geolocation, device fingerprints, and behavioural biometrics could improve 

accuracy and detection rates. Developing a cost-sensitive machine learning framework that penalises false negatives more 

harshly than false positives would also be worthwhile, as it would align the model's performance with the actual financial 

implications of undetected fraud. Along with increasing transparency, applying explainability techniques such as SHAP or 

LIME will not only improve interpretability but also help meet requirements for financial services. 
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